Prediction from regional angst - A study of NFL sentiment in Twitter using technical stock market charting
نویسندگان
چکیده
To predict NFL game outcomes, we examine the application of technical stock market techniques to sentiment gathered from social media. From our analysis we found a $14.84 average return per sentiment-based wager compared to a $12.21 average return loss on the entire 256 games of the 2015-2016 regular season if using an odds-only approach. We further noted that wagers on underdogs (i.e., the less favored teams) that exhibit a “golden cross” pattern in sentiment (e.g., the most recent sentiment signal crosses the longer baseline sentiment), netted a $48.18 return per wager on 41 wagers. These results show promise of cross-domain research and we believe that applying stock market techniques to sports wagering may open an entire new research area.
منابع مشابه
Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملStock Market Prediction Using Twitter Mood
-In the modern times of the information age, the magnitude of social media activity has reached unprecedented levels. Twitter is one such popular online social networking and micro-blogging service, which enables hundreds of millions of users share short messages in real time about events worth broad attention expressing public opinion. In this paper, we investigate the relationship between Twi...
متن کاملStock Prediction Using Twitter Sentiment Analysis
In this paper, we apply sentiment analysis and machine learning principles to find the correlation between ”public sentiment” and ”market sentiment”. We use twitter data to predict public mood and use the predicted mood and previous days’ DJIA values to predict the stock market movements. In order to test our results, we propose a new cross validation method for financial data and obtain 75.56%...
متن کاملExploiting Topic based Twitter Sentiment for Stock Prediction
This paper proposes a technique to leverage topic based sentiments from Twitter to help predict the stock market. We first utilize a continuous Dirichlet Process Mixture model to learn the daily topic set. Then, for each topic we derive its sentiment according to its opinion words distribution to build a sentiment time series. We then regress the stock index and the Twitter sentiment time serie...
متن کاملSemantic Enhanced Social Media Sentiments for Stock Market Prediction
Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Support Systems
دوره 98 شماره
صفحات -
تاریخ انتشار 2017